

Introduction

- We already have a 16-channel Wave Union TDC firmware that has been implemented in an Altera Cyclone III FPGA device (EP3C25F324C6N, \$73.90) and has been tested on a Cyclone III evaluation card.
- The same device can fit 32 channels.
- The power consumption is as low as 27 mW/ channel (with 32 channels/device).
- The same TDC can be used as an ADC with a ramping reference added to the front-end for analog-to-time conversion.

Using FPGA as ADC

The Single Slope ADC

- Analog signal of each channel from the shaper is fed to a comparator and compared with a common ramping reference voltage V_{REF}.
- Pulses, rather than analog signals are transmitted on the cable.
- The times of transitions representing input voltage values are digitized by TDC blocks inside FPGA.
- This approach sometimes is (mistakenly) refereed as "Wilkinson ADC".

TDC Resolution Requirement

- Consider sampling rate at 62.5 MHz, the whole ramping time is 16 ns.
- \Box To achieve 8-bit ADC precision, the TDC LSB is (16 ns)/256 = 62.5 ps.
- □ The low-power Wave Union TDC we implemented has an LSB < 60 ps.

Digital Noise During Digitization

- Typical ADC devices creates noise that may interfere the analog circuits.
- □ The time interval for resetting of the common reference voltage may be noisy but analog signal is not sampled during it.
- There is no digital control activities during ramping up of the common reference voltage.

Differential Inputs and Ramping Reference Voltage

ADC Test Results

The Hardware: Cyclone III Evaluation Card

- The chip placed diagonally is the FPGA ((EP3C25F324C6N).
- The inputs come from the HSMC connector on the right.
- Hit data are stored in a RAM chip (1MB, approx. 120k hits).
- Data are read out via the USB to the host computer.

The Cyclone III Evaluation Card + Adapter Card

The 16 input channel in LVDS are connected to the adapter card on the right.

Plan

Single slope 8-bit ADC at 62.5 MHz will be tested.

Block Diagram of 16 Channels

- The hit time for each of the 16 channel inputs is digitized and encoded.
- Data from 4 channels are buffered and data from 4 groups of 4 channels are merged together.
- Raw hit times are converted to fine time through automatic calibration block.
- Data from all 16 channels are buffered and sent out via 4 pairs of LVDS ports @250 M bits/s.

Output Raw Data and Typical Delta T Histogram Between Two Channels

00003C C064A6 F064B8 C07CA4 F07CB4 C094A0 F094B0 C0AC9C F0ACAC C0C497 F0C4A8 C0DC91 F0DCA2

■ RMS of this histogram is 25 ps.

Resolution at Different Time Delay

- Typical RMS resolution is 25-30 ps.
- Measurements with cleaner power (diamonds) is better than noisy power (squares).

Specifications

RMS Resolution (Delta T between two channels)	30 ps
Same channel re-hit time interval	64 ns
Temporary buffer capacity	128 hits/(4 ch)/(16 us)
LVDS output port rate:	250 M bits/s/port
Output capacity in each LDVS output port:	128 hits/(16 ch)/(16 us)
Number of LVDS output ports:	1, 2, 3, 4/(16 ch)

The Wilkinson ADC

(a) Capacitor Charging

Denys brêhuison

(b) Capacitor Rundown

Ref: Annu. Rev. Nucl. Part. Sci. 1995.45.'1-39 http://www.dnp.fmph.uniba.sk/~kollar/je_w/el3.htm

The Hardware: Cyclone III Evaluation Card

- Data from 4 channels are buffered and data from 4 groups of 4 channels are merged together.
- Raw hit times are converted to fine time through automatic calibration block.
- Data from all 16 channels are buffered and sent out via 4 pairs of LVDS ports @250 M bits/s.

TDC Implemented with FPGA

TDC Using FPGA Logic Chain Delay

- This scheme uses current FPGA technology ©
- Low cost chip family can be used. (e.g. EP2C8T144C6 \$31.68) ③
- Fine TDC precision can be implemented in slow devices (e.g., 20 ps in a 400 MHz chip). ②

Two Major Issues In a Free Operating FPGA

- Widths of bins are different and varies with supply voltage and temperature.
- Some bins are ultra-wide due to LAB boundary crossing

Auto Calibration Using Histogram Method

- It provides a bin-by-bin calibration at certain temperature.
- It is a turn-key solution (bin in, ps out)
- It is semi-continuous (auto update LUT every 16K events)

Good, However

- Auto calibration solved some problems ©
- However, it won't eliminate the ultra-wide bins ⊗

Cell Delay-Based TDC+ Wave Union Launcher

The wave union launcher creates multiple logic transitions after receiving a input logic step.

The wave union launchers can be classified into two types:

- Finite Step Response (FSR)
- Infinite Step Response (ISR)

This is similar as filter or other linear system classifications:

- Finite Impulse Response (FIR)
- Infinite Impulse Response (IIR)

Wave Union Launcher A (FSR Type)

Wave Union Launcher A: 2 Measurements/hit

Sub-dividing Ultra-wide Bins

